

Understanding and Controlling Molecular Excited State Processes Using Metal Oxide Interfaces

Kenneth Hanson Department of Chemistry & Biochemistry Florida State University, Tallahassee, FL, USA

Hanson Research Group

Molecular Photochemistry/Photophysics

Sundström et al. *J. Phys. Chem. B* **1999**, 103, 2327-2346. Lundholm et al. *RSC Adv.* **2014**, 4, 25502-25509.

Structural Control: Humans

Phospholipid Bilayers

Ma et. al. Nature Protocols, 2013, 8, 439

Metal Organic Frameworks

Kent et. al. J. Am. Chem. Soc., 2010, 132, 12767

Slate et. al. J. Am. Chem. Soc., 1998, 120, 4885

Zhu et. al. J. Phys. Chem. C, 2014, 118, 14150

OH

TIO

Metal Ion-Linked Multilayer

Down Conversion vs. Upconversion

 $hv \rightarrow hv$

 $hv \rightarrow hv$

Photon Upconversion

 $2 hv \rightarrow hv$

Photon Upconversion

 $2 hv \rightarrow hv$

Sensitizer-Annihilator Interactions

Solution Chem. Commun., 2004, 2860

Microemulsion Photochem. Photobiol. Sci. 2014, 13, 48

Heterogeneous J. Phys. Chem. C, 2013, 117, 14493

Polymer Films *JACS* 2007, 129, 12652

JACS 2016, 138, 6541

9

Solar Cell Efficiency

Schulze and Schmidt Energy Environ. Sci. 2015, 8, 103-125

Standard solar cell ~33% 1.3 eV bandgap

Solar Cell Efficiency

Schulze and Schmidt Energy Environ. Sci. 2015, 8, 103-125

Max Theoretical Efficiency

Standard solar cell ~33% 1.3 eV bandgap

Solar cell with upconversion > 45% 1.76 eV bandgap

Ekins-Daukes and Schmidt, Appl. Phys. Lett., **2008** 93, 063507.

Harnessing TTA-UC

Optical Coupling:

- 1) Transmission
- 2) Light absorption and TTA
- 3) Upconverted emission
- 4) Absorption by a solar cell

Chem. Commun. **2012**, 48, 209.

J. Phys. Chem. Lett. 2013, 4, 2073.

Harnessing TTA-UC

Optical Coupling:

- 1) Transmission
- 2) Light absorption and TTA
- 3) Upconverted emission
- 4) Absorption by a solar cell

Electronic Coupling:

- 1) Light absorption and TTA
- 2) Photocurrent Generation
- No isotropic emission
- No self-absorption
- Increase sensitizer concentration

Upconversion Solar Cell

Need A* at a charge separation interface!

Metal Ion-Linked Multilayer

Hill et al. J. Phys. Chem. Lett. 2015, 6, 4510.

Glass

Metal Ion-Linked Multilayer

TTA-UC Emission

Hill et al. J. Phys. Chem. Lett. 2015, 6, 4510.

TTA-UC Emission

Hill et al. J. Phys. Chem. Lett. 2015, 6, 4510.

Mechanism

Upconverted Emission!

Photocurrent?

TTA-UC Photocurrent

TTA-UC Photocurrent

- J_{sc}/V_{oc} greater than the sum of its parts.
- J_{sc}= 0.009 mA/cm² ACS Energy Lett. **2016**, 1, 3-8.
- Demonstrated an integrated TTA-UC solar cell.
- $\eta = 1.6 \times 10^{-5} \%$

On TiO₂: Upconverted Photocurrent

Side Note: Efficiency

STATE OF	F	LO e news	SITE	OF FLO	ST/	STATE	24	7
More F	SU News	Watch and	Listen	Experts		For Reporters	So	ocial Media
WEDNESDAY, JANUARY 6, 2016								
Researchers pushing limits of solar cells Kathleen Haughney 12/02/2015 10:20 am								
Tuesday, January 12,2016 Tuesday, January 12,2016 Tuesday, January 12,2016 Tuesday, January 12,2016								
	Page One	Features	News	Investigation	Slices	Energy	Security	
	Analysis	Arts	Travel	Resources	Opinion	Letters	Society	
	Sci-Tech	Action Line	Editorial	Support Us				
The Race for Solar								
Light Trapping Innovation Lifts Solar Cell Efficiency To 45 Percent								
Paul Buckley December 3rd 2015								
	EE TIMES							

 $\eta = 1.6 \times 10^{-5} \%$

JPC Lett., 2018, 9, 5810

Hanson Research Group

JPC Lett., 2018, 9, 5810

JACS 2017 , 139, 10988.

JPC Lett., 2018, 9, 5810

JPC Lett., **2018**, 9, 5810

Energy and Electron Transfer

Upconversion Trilayer

ACS Energy Lett. **2019**, 4, 6, 1458

Energy and Electron Transfer

ACS Energy Lett. 2019, 4, 6, 1458

Photosynthesis

Metal Ion Linked Multilayer Structure

ACS Omega, **2017**, 2, 3901.

Bilayer Structure

What is known:

- Not co-deposition
- Metal-ion coordination
- Directional E/e⁻ transfer

Polarized Attenuated Total Reflectance

John Thomas Bradshaw , A. PhD. Dissertation, University of Arizona, 2005

Metal Oxide-Anthracene Structure

Metal Oxide-Anthracene Structure

Metal Oxide-Anthracene Structure

Multilayer Structure

Multilayer Structure

Structure and Energy Transfer

Structure and Energy Transfer

 ϕ_D = fluorescence QY of F $\Phi_{ ext{FRET}}$ n = refractive index 6 1 +J = overlap integral κ^2 = orientation factor $R_0 = 9780 \, [J \, \phi_D \, n^{-4} \kappa^2]^{1/6}$ r = distance between F and P $(\Phi_{\text{FRET}(\text{calc})})$ = >99% >99% >99% >99% >99% k_{ET} τ_P $\tau_{bilayer}$ $k_{\rm ET} = 3 \times 10^{11} \, {\rm s}^{-1}$

 $\Phi_{\mathrm{FRET}} \approx 100\%$

41

Hanson Research Group Moving Forward: Controlling Energy Transfer

Moving Forward: Controlling Structure

Inhibiting Distortion

Inhibiting Distortion

Strategic Surface Binding

J. Phys. Chem. A 2015, 119, 13, 3181–3193

Strategic Surface Binding

Transient Absorption

Decay Kinetics

Strategic Surface Binding

Moving Forward: Controlling Structure

Atomic Layer Deposition

Controlling Intermolecular Interactions

Conclusions

- TTA-UC Emission
 - On ZrO₂: Blue to green upconversion
 - Quadratic to Linear Behavior
- TTA-UC Solar Cell
 - Improvements with component selection
 - $-~J_{UC}$ up to 315 $\mu A/cm^2$
 - Structure matters
- Determine Structure (polarized ATR)
 - 1^{st} layer orientation is MO_x independent
 - 2^{nd} layer dependent on metal and binding group
 - Reasonable agreement between ATR and Theory (MM)
- Efforts to Control Structure are underway

Other Projects

ES Proton Transfer Catalysis/Enrichment

Boc-D-Proline

86% yield

H₂ Generation Z-Scheme

Photomechanical Polymers

Using IRT and CCT to Analyze Exams

Acknowledgements

Not Pictured Contributors

Dr. Sean Hill
Dr. Tristan Dilbeck
Dr. Yan Zhou
Dr. Drake Beery
Cory Ruchlin (McGill)
Jonathan Wheeler (NCSU)
Cody Basquill (FSU)
Ethan Lambert (FSU)
Dominic Willadsen (REU)

Collaborators

Dr. Raaj WinfredDr. Wei YangDr. Scott Saavedra

Questions?

